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PaddleFL

PaddleFL is an open source federated learning framework based on PaddlePaddle. Researchers can easily replicate and compare different federated learning algorithms with PaddleFL. Developers can also benefit from PaddleFL in that it is easy to deploy a federated learning system in large scale distributed clusters. In PaddleFL, serveral federated learning strategies will be provided with application in computer vision, natural language processing, recommendation and so on. Application of traditional machine learning training strategies such as Multi-task learning, Transfer Learning in Federated Learning settings will be provided. Based on PaddlePaddle’s large scale distributed training and elastic scheduling of training job on Kubernetes, PaddleFL can be easily deployed based on full-stack open sourced software.




Federated Learning

Data is becoming more and more expensive nowadays, and sharing of raw data is very hard across organizations. Federated Learning aims to solve the problem of data isolation and secure sharing of data knowledge among organizations. The concept of federated learning is proposed by researchers in Google [1, 2, 3].


Overview of PaddleFL


In PaddleFL, horizontal and vertical federated learning strategies will be implemented according to the categorization given in [4]. Application demonstrations in natural language processing, computer vision and recommendation will be provided in PaddleFL.


Federated Learning Strategy


	Vertical Federated Learning: Logistic Regression with PrivC, Neural Network with third-party PrivC [5]


	Horizontal Federated Learning: Federated Averaging [2], Differential Privacy [6]







Training Strategy


	Multi Task Learning [7]


	Transfer Learning [8]


	Active Learning









Framework design of PaddleFL



In PaddleFL, components for defining a federated learning task and training a federated learning job are as follows:


Compile Time


	FL-Strategy: a user can define federated learning strategies with FL-Strategy such as Fed-Avg[1]


	User-Defined-Program: PaddlePaddle’s program that defines the machine learning model structure and training strategies such as multi-task learning.


	Distributed-Config: In federated learning, a system should be deployed in distributed settings. Distributed Training Config defines distributed training node information.


	FL-Job-Generator: Given FL-Strategy, User-Defined Program and Distributed Training Config, FL-Job for federated server and worker will be generated through FL Job Generator. FL-Jobs will be sent to organizations and federated parameter server for run-time execution.







Run Time


	FL-Server: federated parameter server that usually runs in cloud or third-party clusters.


	FL-Worker: Each organization participates in federated learning will have one or more federated workers that will communicate with the federated parameter server.


	FL-scheduler: Decide which set of trainers can join the training before each updating cycle.









On Going and Future Work


	Experimental benchmark with public datasets in federated learning settings.


	Federated Learning Systems deployment methods in Kubernetes.


	Vertical Federated Learning Strategies and more horizontal federated learning strategies will be open sourced.
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Example in recommendation with FedAvg

This document introduces how to use PaddleFL to train a model with Fl Strategy.


Dependencies


	paddlepaddle>=1.6







How to install PaddleFL

Please use python which has paddlepaddle installed

python setup.py install








Model

Gru4rec [https://arxiv.org/abs/1511.06939] is a classical session-based recommendation model. Detailed implementations with paddlepaddle is here [https://github.com/PaddlePaddle/models/tree/develop/PaddleRec/gru4rec].




Datasets

Public Dataset Rsc15 [https://2015.recsyschallenge.com]

#download data
cd example/gru4rec_demo
sh download.sh








How to work in PaddleFL

PaddleFL has two phases , CompileTime and RunTime. In CompileTime, a federated learning task is defined by fl_master. In RunTime, a federated learning job is executed on fl_server and fl_trainer in distributed clusters.

sh run.sh








How to work in CompileTime

In this example, we implement compile time programs in fl_master.py

# please run fl_master to generate fl_job
python fl_master.py





In fl_master.py,  we first define FL-Strategy, User-Defined-Program and Distributed-Config. Then FL-Job-Generator generate FL-Job for federated server and worker.

# define model
model = Model()
model.gru4rec_network()

# define JobGenerator and set model config
# feed_name and target_name are config for save model.
job_generator = JobGenerator()
optimizer = fluid.optimizer.SGD(learning_rate=2.0)
job_generator.set_optimizer(optimizer)
job_generator.set_losses([model.loss])
job_generator.set_startup_program(model.startup_program)
job_generator.set_infer_feed_and_target_names(
    [x.name for x in model.inputs], [model.loss.name, model.recall.name])

# define FL-Strategy , we now support two flstrategy, fed_avg and dpsgd. Inner_step means fl_trainer locally train inner_step mini-batch.
build_strategy = FLStrategyFactory()
build_strategy.fed_avg = True
build_strategy.inner_step = 1
strategy = build_strategy.create_fl_strategy()

# define Distributed-Config and generate fl_job
endpoints = ["127.0.0.1:8181"]
output = "fl_job_config"
job_generator.generate_fl_job(
    strategy, server_endpoints=endpoints, worker_num=2, output=output)








How to work in RunTime

python -u fl_scheduler.py >scheduler.log &
python -u fl_server.py >server0.log &
python -u fl_trainer.py 0 data/ >trainer0.log &
python -u fl_trainer.py 1 data/ >trainer1.log &





fl_trainer.py can define own reader according to data.

r = Gru4rec_Reader()
train_reader = r.reader(train_file_dir, place, batch_size=10)








Simulated experiments on real world dataset

To show the concept and effectiveness of horizontal federated learning with PaddleFL, a simulated experiment is conducted on an open source dataset with a real world task. In horizontal federated learning, a group of organizations are doing similar tasks based on private dataset and they are willing to collaborate on a certain task. The goal of the collaboration is to improve the task accuracy with federated learning.

The simulated experiment suppose all organizations have homogeneous dataset and homogeneous task which is an ideal case. The whole dataset is from small part of [Rsc15] and each organization has a subset as a private dataset. To show the performanc e improvement under federated learning, models based on each organization’s private dataset are trained and a model under distributed federated learning is trained. A model based on traditional parameter server training is also trained where the whole dataset is owned by a single organization.

From the table and the figure given below, model evaluation results are similar between federated learning and traditional parameter server training. It is clear that compare with models trained with only private dataset, models’ performance for each organization get significant improvement with federated learning.

# download code and readme
wget https://paddle-zwh.bj.bcebos.com/gru4rec_paddlefl_benchmark/gru4rec_benchmark.tar













	Dataset

	training methods

	FL Strategy

	recall@20





	the whole dataset

	private training

	
	




	0.504



	the whole dataset

	federated learning

	FedAvg

	0.504



	1/4 of the whole dataset

	private training

	
	




	0.286



	1/4 of the whole dataset

	private training

	
	




	0.277



	1/4 of the whole dataset

	private training

	
	




	0.269



	1/4 of the whole dataset

	private training

	
	




	0.282







  
    
    API Reference
    

    
 
  

    
      
          
            
  
API Reference



	paddle_fl.core.master: PaddleFL Compile-Time

	paddle_fl.core.strategy: Federated Learning Strategies

	paddle_fl.core.trainer: Trainer Run-Time

	paddle_fl.core.server: Server Run-Time
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paddle_fl.core.master: PaddleFL Compile-Time
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paddle_fl.core.strategy: Federated Learning Strategies
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paddle_fl.core.trainer: Trainer Run-Time
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paddle_fl.core.server: Server Run-Time
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The Team

PGL is developed and maintained by NLP and Paddle Teams at Baidu
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The Team

PaddleFL is developed by PaddlePaddle and Security team.
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Example in Recognize Digits with DPSGD

This document introduces how to use PaddleFL to train a model with Fl Strategy: DPSGD.


Dependencies


	paddlepaddle>=1.6







How to install PaddleFL

Please use python which has paddlepaddle installed

python setup.py install








Model

The simplest Softmax regression model is to get features with input layer passing through a fully connected layer and then compute and ouput probabilities of multiple classifications directly via Softmax function [PaddlePaddle tutorial: recognize digits [https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits#references]].




Datasets

Public Dataset MNIST [http://yann.lecun.com/exdb/mnist/]

The dataset will downloaded automatically in the API and will be located under /home/username/.cache/paddle/dataset/mnist:







	filename

	note





	train-images-idx3-ubyte

	train data picture, 60,000 data



	train-labels-idx1-ubyte

	train data label, 60,000 data



	t10k-images-idx3-ubyte

	test data picture, 10,000 data



	t10k-labels-idx1-ubyte

	test data label, 10,000 data









How to work in PaddleFL

PaddleFL has two phases , CompileTime and RunTime. In CompileTime, a federated learning task is defined by fl_master. In RunTime, a federated learning job is executed on fl_server and fl_trainer in distributed clusters.

sh run.sh






How to work in CompileTime

In this example, we implement compile time programs in fl_master.py

python fl_master.py





In fl_master.py, we first define FL-Strategy, User-Defined-Program and Distributed-Config. Then FL-Job-Generator generate FL-Job for federated server and worker.

class Model(object):
    def __init__(self):
        pass

    def lr_network(self):
        self.inputs = fluid.layers.data(name='img', shape=[1, 28, 28], dtype="float32")
        self.label = fluid.layers.data(name='label', shape=[1],dtype='int64')
        self.predict = fluid.layers.fc(input=self.inputs, size=10, act='softmax')
        self.sum_cost = fluid.layers.cross_entropy(input=self.predict, label=self.label)
        self.accuracy = fluid.layers.accuracy(input=self.predict, label=self.label)
        self.loss = fluid.layers.mean(self.sum_cost)
        self.startup_program = fluid.default_startup_program()


model = Model()
model.lr_network()

STEP_EPSILON = 0.1
DELTA = 0.00001
SIGMA = math.sqrt(2.0 * math.log(1.25/DELTA)) / STEP_EPSILON
CLIP = 4.0
batch_size = 64

job_generator = JobGenerator()
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
job_generator.set_optimizer(optimizer)
job_generator.set_losses([model.loss])
job_generator.set_startup_program(model.startup_program)
job_generator.set_infer_feed_and_target_names(
    [model.inputs.name, model.label.name], [model.loss.name, model.accuracy.name])

build_strategy = FLStrategyFactory()
build_strategy.dpsgd = True
build_strategy.inner_step = 1
strategy = build_strategy.create_fl_strategy()
strategy.learning_rate = 0.1
strategy.clip = CLIP
strategy.batch_size = float(batch_size)
strategy.sigma = CLIP * SIGMA

# endpoints will be collected through the cluster
# in this example, we suppose endpoints have been collected
endpoints = ["127.0.0.1:8181"]
output = "fl_job_config"
job_generator.generate_fl_job(
    strategy, server_endpoints=endpoints, worker_num=2, output=output)





How to work in RunTime

python -u fl_scheduler.py >scheduler.log &
python -u fl_server.py >server0.log &
python -u fl_trainer.py 0 data/ >trainer0.log &
python -u fl_trainer.py 1 data/ >trainer1.log &





In fl_server.py, we load and run the FL server job.

server = FLServer()
server_id = 0
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_server_job(job_path, server_id)
server.set_server_job(job)
server.start()





In fl_trainer.py, we load and run the FL trainer job, then evaluate the accuracy with test data and compute the privacy budget.

trainer_id = int(sys.argv[1]) # trainer id for each guest
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer.start()





def train_test(train_test_program, train_test_feed, train_test_reader):
        acc_set = []
        for test_data in train_test_reader():
            acc_np = trainer.exe.run(
                program=train_test_program,
                feed=train_test_feed.feed(test_data),
                fetch_list=["accuracy_0.tmp_0"])
            acc_set.append(float(acc_np[0]))
        acc_val_mean = numpy.array(acc_set).mean()
        return acc_val_mean

def compute_privacy_budget(sample_ratio, epsilon, step, delta):
    E = 2 * epsilon * math.sqrt(step * sample_ratio)
    print("({0}, {1})-DP".format(E, delta))

output_folder = "model_node%d" % trainer_id
epoch_id = 0
step = 0

while not trainer.stop():
    epoch_id += 1
    if epoch_id > 40:
        break
    print("epoch %d start train" % (epoch_id))
    for step_id, data in enumerate(train_reader()):
        acc = trainer.run(feeder.feed(data), fetch=["accuracy_0.tmp_0"])
        step += 1
    # print("acc:%.3f" % (acc[0]))

    acc_val = train_test(
        train_test_program=test_program,
        train_test_reader=test_reader,
        train_test_feed=feeder)

    print("Test with epoch %d, accuracy: %s" % (epoch_id, acc_val))
    compute_privacy_budget(sample_ratio=0.001, epsilon=0.1, step=step, delta=0.00001)

    save_dir = (output_folder + "/epoch_%d") % epoch_id
    trainer.save_inference_program(output_folder)










Simulated experiments on public dataset MNIST

To show the effectiveness of DPSGD-based federated learning with PaddleFL, a simulated experiment is conducted on an open source dataset MNIST. From the figure given below, model evaluation results are similar between DPSGD-based federated learning and traditional parameter server training when the overall privacy budget epsilon is 1.3 or 0.13.
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Example in recommendation with FedAvg

This document introduces how to use PaddleFL to train a model with Fl Strategy.


Dependencies


	paddlepaddle>=1.6







How to install PaddleFL

Please use python which has paddlepaddle installed

python setup.py install








Model

Gru4rec [https://arxiv.org/abs/1511.06939] is a classical session-based recommendation model. Detailed implementations with paddlepaddle is here [https://github.com/PaddlePaddle/models/tree/develop/PaddleRec/gru4rec].




Datasets

Public Dataset Rsc15 [https://2015.recsyschallenge.com]

#download data
cd example/gru4rec_demo
sh download.sh








How to work in PaddleFL

PaddleFL has two phases , CompileTime and RunTime. In CompileTime, a federated learning task is defined by fl_master. In RunTime, a federated learning job is executed on fl_server and fl_trainer in distributed clusters.

sh run.sh








How to work in CompileTime

In this example, we implement compile time programs in fl_master.py

# please run fl_master to generate fl_job
python fl_master.py





In fl_master.py,  we first define FL-Strategy, User-Defined-Program and Distributed-Config. Then FL-Job-Generator generate FL-Job for federated server and worker.

# define model
model = Model()
model.gru4rec_network()

# define JobGenerator and set model config
# feed_name and target_name are config for save model.
job_generator = JobGenerator()
optimizer = fluid.optimizer.SGD(learning_rate=2.0)
job_generator.set_optimizer(optimizer)
job_generator.set_losses([model.loss])
job_generator.set_startup_program(model.startup_program)
job_generator.set_infer_feed_and_target_names(
    [x.name for x in model.inputs], [model.loss.name, model.recall.name])

# define FL-Strategy , we now support two flstrategy, fed_avg and dpsgd. Inner_step means fl_trainer locally train inner_step mini-batch.
build_strategy = FLStrategyFactory()
build_strategy.fed_avg = True
build_strategy.inner_step = 1
strategy = build_strategy.create_fl_strategy()

# define Distributed-Config and generate fl_job
endpoints = ["127.0.0.1:8181"]
output = "fl_job_config"
job_generator.generate_fl_job(
    strategy, server_endpoints=endpoints, worker_num=2, output=output)








How to work in RunTime

python -u fl_scheduler.py >scheduler.log &
python -u fl_server.py >server0.log &
python -u fl_trainer.py 0 data/ >trainer0.log &
python -u fl_trainer.py 1 data/ >trainer1.log &





fl_trainer.py can define own reader according to data.

r = Gru4rec_Reader()
train_reader = r.reader(train_file_dir, place, batch_size=10)








Simulated experiments on real world dataset

To show the concept and effectiveness of horizontal federated learning with PaddleFL, a simulated experiment is conducted on an open source dataset with a real world task. In horizontal federated learning, a group of organizations are doing similar tasks based on private dataset and they are willing to collaborate on a certain task. The goal of the collaboration is to improve the task accuracy with federated learning.

The simulated experiment suppose all organizations have homogeneous dataset and homogeneous task which is an ideal case. The whole dataset is from small part of [Rsc15] and each organization has a subset as a private dataset. To show the performanc e improvement under federated learning, models based on each organization’s private dataset are trained and a model under distributed federated learning is trained. A model based on traditional parameter server training is also trained where the whole dataset is owned by a single organization.

From the table and the figure given below, model evaluation results are similar between federated learning and traditional parameter server training. It is clear that compare with models trained with only private dataset, models’ performance for each organization get significant improvement with federated learning.

# download code and readme
wget https://paddle-zwh.bj.bcebos.com/gru4rec_paddlefl_benchmark/gru4rec_benchmark.tar













	Dataset

	training methods

	FL Strategy

	recall@20





	the whole dataset

	private training

	
	




	0.504



	the whole dataset

	federated learning

	FedAvg

	0.504



	1/4 of the whole dataset

	private training

	
	




	0.286



	1/4 of the whole dataset

	private training

	
	




	0.277



	1/4 of the whole dataset

	private training

	
	




	0.269



	1/4 of the whole dataset

	private training

	
	




	0.282
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Example in Recognize Digits with DPSGD

This document introduces how to use PaddleFL to train a model with Fl Strategy: Secure Aggregation. Using Secure Aggregation strategy, the server can aggregate the model parameters without learning the value of the parameters.


Dependencies


	paddlepaddle>=1.6







How to install PaddleFL

Please use python which has paddlepaddle installed

python setup.py install








Model

The simplest Softmax regression model is to get features with input layer passing through a fully connected layer and then compute and ouput probabilities of multiple classes directly via Softmax function [PaddlePaddle tutorial: recognize digits [https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits#references]].




Datasets

Public Dataset MNIST [http://yann.lecun.com/exdb/mnist/]

The dataset will downloaded automatically in the API and will be located under /home/username/.cache/paddle/dataset/mnist:







	filename

	note





	train-images-idx3-ubyte

	train data picture, 60,000 data



	train-labels-idx1-ubyte

	train data label, 60,000 data



	t10k-images-idx3-ubyte

	test data picture, 10,000 data



	t10k-labels-idx1-ubyte

	test data label, 10,000 data









How to work in PaddleFL

PaddleFL has two phases , CompileTime and RunTime. In CompileTime, a federated learning task is defined by fl_master. In RunTime, a federated learning job is executed on fl_server and fl_trainer in distributed clusters.

sh run.sh






How to work in CompileTime

In this example, we implement compile time programs in fl_master.py

python fl_master.py





In fl_master.py, we first define FL-Strategy, User-Defined-Program and Distributed-Config. Then FL-Job-Generator generate FL-Job for federated server and worker.

def linear_regression(self, inputs, label):
        param_attrs = fluid.ParamAttr(
            name="fc_0.b_0",
            initializer=fluid.initializer.ConstantInitializer(0.0))
        param_attrs = fluid.ParamAttr(
            name="fc_0.w_0",
            initializer=fluid.initializer.ConstantInitializer(0.0))
        self.predict = fluid.layers.fc(input=inputs, size=10, act='softmax', param_attr=param_attrs)
        self.sum_cost = fluid.layers.cross_entropy(input=self.predict, label=label)
        self.loss = fluid.layers.mean(self.sum_cost)
        self.accuracy = fluid.layers.accuracy(input=self.predict, label=label)
        self.startup_program = fluid.default_startup_program()


inputs = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')

model = Model()
model.linear_regression(inputs, label)

job_generator = JobGenerator()
optimizer = fluid.optimizer.SGD(learning_rate=0.01)
job_generator.set_optimizer(optimizer)
job_generator.set_losses([model.loss])
job_generator.set_startup_program(model.startup_program)
job_generator.set_infer_feed_and_target_names(
    [inputs.name, label.name], [model.loss.name])

build_strategy = FLStrategyFactory()
build_strategy.sec_agg = True
param_name_list = []
param_name_list.append("fc_0.w_0.opti.trainer_") # need trainer_id when running
param_name_list.append("fc_0.b_0.opti.trainer_")
build_strategy.param_name_list = param_name_list
build_strategy.inner_step = 10
strategy = build_strategy.create_fl_strategy()

# endpoints will be collected through the cluster
# in this example, we suppose endpoints have been collected
endpoints = ["127.0.0.1:8181"]
output = "fl_job_config"
job_generator.generate_fl_job(
    strategy, server_endpoints=endpoints, worker_num=2, output=output)





How to work in RunTime

python3 fl_master.py
sleep 2
python3 -u fl_server.py >log/server0.log &
sleep 2
python3 -u fl_trainer.py 0 >log/trainer0.log &
sleep 2
python3 -u fl_trainer.py 1 >log/trainer1.log &





In fl_server.py, we load and run the FL server job.

server = FLServer()
server_id = 0
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_server_job(job_path, server_id)
server.set_server_job(job)
server.start()





In fl_trainer.py, we prepare the MNIST dataset, load and run the FL trainer job, then evaluate the accuracy.  Before training , we first prepare the party’s private key and other party’s public key. Then, each party generates a random noise using Diffie-Hellman key aggregate protocol with its private key and each other’s public key [1]. If the other party’s id is larger than this party’s id, the model parameters add this random noise. If the other party’s id is less than this party’s id, the model parameters subtract this random noise. So, and the model parameters is masked before uploading to the server. Finally, the random noises can be removed when aggregating the masked parameters from all the parties.

logging.basicConfig(filename="log/test.log", filemode="w", format="%(asctime)s %(name)s:%(levelname)s:%(message)s", datefmt="%d-%M-%Y %H:%M:%S", level=logging.DEBUG)
logger = logging.getLogger("FLTrainer")

BATCH_SIZE = 64

train_reader = paddle.batch(
    paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=500),
    batch_size=BATCH_SIZE)
test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)

trainer_num = 2
trainer_id = int(sys.argv[1]) # trainer id for each guest

job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer.trainer_id = trainer_id
trainer.trainer_num = trainer_num
trainer.key_dir = "./keys/"
trainer.start()

output_folder = "fl_model"
epoch_id = 0
step_i = 0

inputs = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
feeder = fluid.DataFeeder(feed_list=[inputs, label], place=fluid.CPUPlace())

# for test
test_program = trainer._main_program.clone(for_test=True)

def train_test(train_test_program,
                   train_test_feed, train_test_reader):
    acc_set = []
    avg_loss_set = []
    for test_data in train_test_reader():
        acc_np, avg_loss_np = trainer.exe.run(
            program=train_test_program,
            feed=train_test_feed.feed(test_data),
            fetch_list=["accuracy_0.tmp_0", "mean_0.tmp_0"])
        acc_set.append(float(acc_np))
        avg_loss_set.append(float(avg_loss_np))
    acc_val_mean = numpy.array(acc_set).mean()
    avg_loss_val_mean = numpy.array(avg_loss_set).mean()
    return avg_loss_val_mean, acc_val_mean
# for test

while not trainer.stop():
    epoch_id += 1
    print("epoch %d start train" % (epoch_id))

    for data in train_reader():
        step_i += 1
        trainer.step_id = step_i
        accuracy, = trainer.run(feed=feeder.feed(data),
            fetch=["accuracy_0.tmp_0"])
        if step_i % 100 == 0:
            print("Epoch: {0}, step: {1}, accuracy: {2}".format(epoch_id, step_i, accuracy[0]))

    avg_loss_val, acc_val = train_test(train_test_program=test_program,
                                       train_test_reader=test_reader,
                                       train_test_feed=feeder)
    print("Test with Epoch %d, avg_cost: %s, acc: %s" %(epoch_id, avg_loss_val, acc_val))

    if epoch_id > 40:
        break
    if step_i % 100 == 0:
        trainer.save_inference_program(output_folder)





[1] Aaron Segal, Antonio Marcedone, Benjamin Kreuter, Daniel Ramage, H. Brendan McMahan, Karn Seth, Keith Bonawitz, Sarvar Patel, Vladimir Ivanov. Practical Secure Aggregation  for Privacy-Preserving Machine Learning, The 24th ACM Conference on Computer and Communications Security (CCS), 2017
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PaddleFL

PaddleFL is an open source federated learning framework based on PaddlePaddle. Researchers can easily replicate and compare different federated learning algorithms with PaddleFL. Developers can also benefit from PaddleFL in that it is easy to deploy a federated learning system in large scale distributed clusters. In PaddleFL, serveral federated learning strategies will be provided with application in computer vision, natural language processing, recommendation and so on. Application of traditional machine learning training strategies such as Multi-task learning, Transfer Learning in Federated Learning settings will be provided. Based on PaddlePaddle’s large scale distributed training and elastic scheduling of training job on Kubernetes, PaddleFL can be easily deployed based on full-stack open sourced software.




Federated Learning

Data is becoming more and more expensive nowadays, and sharing of raw data is very hard across organizations. Federated Learning aims to solve the problem of data isolation and secure sharing of data knowledge among organizations. The concept of federated learning is proposed by researchers in Google [1, 2, 3].


Overview of PaddleFL


In PaddleFL, horizontal and vertical federated learning strategies will be implemented according to the categorization given in [4]. Application demonstrations in natural language processing, computer vision and recommendation will be provided in PaddleFL.


Federated Learning Strategy


	Vertical Federated Learning: Logistic Regression with PrivC, Neural Network with third-party PrivC [5]


	Horizontal Federated Learning: Federated Averaging [2], Differential Privacy [6]







Training Strategy


	Multi Task Learning [7]


	Transfer Learning [8]


	Active Learning









Framework design of PaddleFL



In PaddleFL, components for defining a federated learning task and training a federated learning job are as follows:


Compile Time


	FL-Strategy: a user can define federated learning strategies with FL-Strategy such as Fed-Avg[1]


	User-Defined-Program: PaddlePaddle’s program that defines the machine learning model structure and training strategies such as multi-task learning.


	Distributed-Config: In federated learning, a system should be deployed in distributed settings. Distributed Training Config defines distributed training node information.


	FL-Job-Generator: Given FL-Strategy, User-Defined Program and Distributed Training Config, FL-Job for federated server and worker will be generated through FL Job Generator. FL-Jobs will be sent to organizations and federated parameter server for run-time execution.







Run Time


	FL-Server: federated parameter server that usually runs in cloud or third-party clusters.


	FL-Worker: Each organization participates in federated learning will have one or more federated workers that will communicate with the federated parameter server.


	FL-scheduler: Decide which set of trainers can join the training before each updating cycle.









On Going and Future Work


	Experimental benchmark with public datasets in federated learning settings.


	Federated Learning Systems deployment methods in Kubernetes.


	Vertical Federated Learning Strategies and more horizontal federated learning strategies will be open sourced.
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Step 1: Define Federated Learning Compile-Time

We define very simple multiple layer perceptron for demonstration. When multiple organizations
agree to share data knowledge through PaddleFL, a model can be defined with agreement from these organizations. A FLJob can be generated and saved. Programs needed to be run each node will be generated separately in FLJob.

import paddle.fluid as fluid
import paddle_fl as fl
from paddle_fl.core.master.job_generator import JobGenerator
from paddle_fl.core.strategy.fl_strategy_base import FLStrategyFactory

class Model(object):
    def __init__(self):
        pass

    def mlp(self, inputs, label, hidden_size=128):
        self.concat = fluid.layers.concat(inputs, axis=1)
        self.fc1 = fluid.layers.fc(input=self.concat, size=256, act='relu')
        self.fc2 = fluid.layers.fc(input=self.fc1, size=128, act='relu')
    self.predict = fluid.layers.fc(input=self.fc2, size=2, act='softmax')
        self.sum_cost = fluid.layers.cross_entropy(input=self.predict, label=label)
        self.accuracy = fluid.layers.accuracy(input=self.predict, label=label)
        self.loss = fluid.layers.reduce_mean(self.sum_cost)
        self.startup_program = fluid.default_startup_program()

inputs = [fluid.layers.data( \
            name=str(slot_id), shape=[5],
        dtype="float32")
      for slot_id in range(3)]
label = fluid.layers.data( \
            name="label",
            shape=[1],
            dtype='int64')

model = Model()
model.mlp(inputs, label)

job_generator = JobGenerator()
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
job_generator.set_optimizer(optimizer)
job_generator.set_losses([model.loss])
job_generator.set_startup_program(model.startup_program)
job_generator.set_infer_feed_and_target_names(
    [x.name for x in inputs], [model.predict.name])

build_strategy = FLStrategyFactory()
build_strategy.fed_avg = True
build_strategy.inner_step = 1
strategy = build_strategy.create_fl_strategy()

endpoints = ["127.0.0.1:8181"]
output = "fl_job_config"
job_generator.generate_fl_job(
    strategy, server_endpoints=endpoints, worker_num=2, output=output)








Step 2: Issue FL Job to Organizations

We can define a secure service to send programs to each node in FLJob. There are two types of nodes in distributed federated learning job. One is FL Server, the other is FL Trainer. A FL Trainer is owned by individual organization and an organization can have multiple FL Trainers given different amount of data knowledge the organization is willing to share. A FL Server is owned by a secure distributed training cluster. By means of security of the cluster, all organizations participated in the Federated Training Job should agree to trust the cluster is secure.




Step 3: Start Federated Learning Run-Time

On FL Scheduler Node, number of servers and workers are defined. Besides, the number of workers that participate in each upating cycle is also determined. Finally, the FL Scheduler waits servers and workers to initialize.

from paddle_fl.core.scheduler.agent_master import FLScheduler

worker_num = 2
server_num = 1
# Define the number of worker/server and the port for scheduler
scheduler = FLScheduler(worker_num,server_num,port=9091)
scheduler.set_sample_worker_num(worker_num)
scheduler.init_env()
print("init env done.")
scheduler.start_fl_training()





On FL Trainer Node, a training script is defined as follows:

from paddle_fl.core.trainer.fl_trainer import FLTrainerFactory
from paddle_fl.core.master.fl_job import FLRunTimeJob
import numpy as np
import sys

def reader():
    for i in range(1000):
        data_dict = {}
        for i in range(3):
            data_dict[str(i)] = np.random.rand(1, 5).astype('float32')
        data_dict["label"] = np.random.randint(2, size=(1, 1)).astype('int64')
        yield data_dict

trainer_id = int(sys.argv[1]) # trainer id for each guest
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
job._scheduler_ep = "127.0.0.1:9091" # Inform the scheduler IP to trainer
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer.start()

output_folder = "fl_model"
step_i = 0
while not trainer.stop():
    step_i += 1
    print("batch %d start train" % (step_i))
    trainer.run(feed=data, fetch=[])
    if trainer_id == 0:
        print("start saving model")
        trainer.save_inference_program(output_folder)
    if step_i >= 100:
       break





On FL Server Node, a training script is defined as follows:

import paddle_fl as fl
import paddle.fluid as fluid
from paddle_fl.core.server.fl_server import FLServer
from paddle_fl.core.master.fl_job import FLRunTimeJob
server = FLServer()
server_id = 0
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_server_job(job_path, server_id)
job._scheduler_ep = "127.0.0.1:9091" # IP address for scheduler
server.set_server_job(job)
server._current_ep = "127.0.0.1:8181" # IP address for server
server.start()
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